马尔可夫分析(Analysis By Markov)起源于俄国数学家A.A.马尔可夫对成链的试验序列的研究。在马尔可夫过程的假设前提下,通过分析随机变量的现时变化情况来预测这些变量未来变化情况的一种预测方法。
1907年马尔可夫发现某些随机事件的第n次试验结果常决定于它的前一次(n-1次)试验结果。马尔可夫假定各次转移过程中的转移概率无后效性,用以对物理学中的布朗运动作出数学描述。1923年由美国数学家N.维纳提出连续轨道的马尔可夫过程的严格数学结构。30~40年代由A.H.柯尔莫戈罗夫、W.费勒、W.德布林、P.莱维和J.L.杜布等人建立了马尔可夫过程的一般理论,并把时间序列转移概率的链式称为马尔可夫链。马尔可夫分析已成为市场预测的有效工具,用来预测顾客的购买行为和商品的市场占有率等。
马尔可夫决策过程是指决策者周期地或连续地观察具有马尔可夫性的随机动态系统,序贯地作出决策。即根据每个时刻观察到的状态,从可用的行动集合中选用一个行动作出决策,系统下一步(未来)的状态是随机的,并且其状态转移概率具有马尔可夫性。
马尔可夫分析在企业管理中的应用
|